


erogeneity Quantification in dynamical systems consisting of (many) individual
dynamical units coupled in a network. These units differ in the way they are
structurally linked to form the network; their “structural identities” are hetero-
geneous, and the distribution of these heterogeneities derives from the network
structure itself.

Network models are increasingly being used to study large, complex real life
systems in a variety of contexts such as the internet, chemical and biochemi-
cal reaction networks, social networks and more [2, 3, 4, 5, 6]. A network is
a mathematical representation of individual subsystems called nodes (or ver-
tices), which are connected to one another through edges (or links). In the
specific example of a social network the nodes represent people, while the edges
connecting them represent relationships (friendships, coauthorships, etc.) be-



a known distribution on uncertain dynamical systems [19], and we will discuss
this analogy in more detail below.

In order to illustrate these ideas we consider a simple agent-based model
of opinion propagation where the agents are connected by a social network;
simulations of this model indicate that the states of the agents become quickly
correlated to the connectivity degrees of these agents as nodes in the network.
The paper is organized as follows: Our illustrative model is described in Sec. 2,
along with a quick overview of its nonlinear dynamic behavior. Sec. 3 defines and
describes the coarse representation that forms the basis of our computational
reduced model. A few details of the coarse variable description are relegated to
the Appendix, in order to maintain the simplicity and flow of the discussion.
A brief outline of the Equation-Free approach employed to computationally
implement the reduced model is described in Sec. 4, along with the res



Figure 1: Left: The degree histogram of the illustrative network structure



Figure 2: A 3D plot of the evolution of the average emotional state of agents with a given
degree versus the degree is shown evolving over time on the left. The steady state of this
average emotional state versus degree is shown on the right. The initial condition for the
simulation gave all agents a uniform emotional state of 0.8.

2.1. Nonlinear model behavior

The dynamical behavior of the model is described in considerable detail in
[20]. We briefly recount some basic features of these dynamics here. Direct
simulations, using the model rules, initialized at different initial conditions are
presented. The state of the system at any moment in time is completely specified
by the states of each of the 20, 000 agents in the network. Certain properties
of the system can be best conveyed through chosen collective observables that
are hopefully representative of the overall dynamics of the system. The average
emotional state of all network agents is one such observable of interest. The
evolution of average emotional state of all the agents in the network from various
distinct initializations is shown in Fig. 1; for simplicity, the states of all the
agents were initialized uniformly at fixed values over the network (but different
fixed values for each initialization). The figure shows that the system reaches
one of three stable steady states depending on the initial conditions; parameter
settings leading to a single stable, or to two stable stationary states also exist
in a detailed bifurcation diagram and have been discussed in [20].

3. Coarse representation

To obtain a reduced model, one must first select a set of coarse variables
that accurately capture the long-term evolution of the system. To motivate our
choice, we examined the detailed profiles of system states along an ensemble of
trajectories like the ones summarized in Fig. 1. For this model, we observed
that the states of the agents quickly become highly correlated with their degrees.
Fig. 2 shows the evolution in time of the average state of all agents in a degree
class (i.e., all agents having the same degree) as a function of the degree. The
curve evolves smoothly in time, and it was demonstrated in [20] that such a
correlation could indeed be used to obtain a reduced description of the model.
A method of “binning” was employed in that work to construct good collective
variables: this involved partitioning the network nodes into different groups
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(based on the node degrees) and required 80 such groups, leading to 80 coarse
variables.

We now realize that what, in that paper, was an ad hoc reduction is just a
special case of a very general, and potentially powerful approach to systemati-



Figure 3: Left: The steady state average emotional state of all the agents with a specified
degree (as in the right plot of Fig. 2) is plotted versus the degree as (blue) dots. The curve
fit obtained by using 10 of our orthogonal polynomials is plotted as a (red) solid curve for
comparison. Right: For the same case, the total emotional state of all the agents with a
specified degree is plotted versus the degree as (blue) dots. This plot on the right is just a
product of the plot on the left and the degree histogram shown in Fig. 1. The (red) solid lines
correspond to the results from our polynomial approximation procedure.

in the approximation procedure. We choose simple proportional weights which
implies w(d) = h(d), where h(d) represents the histogram of degrees (i.e., h(d)
is the number of agents in the network with degree d).

The polynomials pi are thus chosen to be orthogonal with respect to the
degree distribution h(d) = w(d). This orthogonality condition can be described
as follows:

〈pi(d), pj(d)〉
w(d) = δij . (3)

Since the polynomials are orthogonal with respect to the weight distribution,
the coefficients that minimize the residual (with respect to the same



scheme suggests Meixner polynomials as basis functions. The derivation of or-
thogonal polynomials for any (discrete, possibly truncated/empirical) weight
function w(d) (which we used for our numerical computations) is discussed in
the Appendix.

In Fig. 3, we re-plot the curve of average emotional state versus degree at
the “top” steady state branch (steady state 1 in Fig. 1) using (blue) dots. We
evaluate the first 10 polynomials that are orthogonal to the degree distribution
of our particular network, sampled empirically from the “theoretical” truncated



operator can then be defined in terms of this microscopic evolution operator as
well as the lifting and restriction operators as follows:

Φt(·) = R ◦ φt ◦ L(·). (5)

In other words, the evolution of the coarse variables can be represented as:

c(T + t) = Φt(c(T )),

where Φt is defined in Eq. 5 and c represents the vector of coefficients [c1, c2,...
ck].





Figure 4: Evolution of the coarse variables corresponding to Fig. 2. The solid lines indicate
results obtained from direct simulations. The dots indicate results obtained through coarse
projective integration using 10 coefficients (accelerating the overall simulation by a factor of
2) The plot on the left shows the evolution of the first 5 coefficients, while the plot on the
right shows that of the next 5 coefficients.

Figure 5: Left: The steady state average emotional state of agents of a specified degree
versus the degree is plotted as (red) dots. The lifting of the coarse steady state computed



Figure 6: Left: The steady state average emotional state of agents of a specified degree
versus the degree is plotted as (red) dots. The lifting of the coarse steady state computed by
Newton-GMRES algorithm is plotted as a (blue) solid curve. Center: The steady state total

emotional state of agents of a specified degree versus the degree is plotted as (red) dots. The
lifting of the coarse steady state computed by Newton-GMRES algorithm is plotted as a (blue)
solid curve. Right: Convergence of Newton-GMRES: The L2 norm of the coarse residual is
plotted against the iteration number. Computations were performed with a 6 polynomial



“Heterogeneity Quantification” rather than Uncertainty Quantification. In UQ
problems, the effect of a random parameter with a known distribution on the
system state is captured by expanding the state in terms of orthogonal poly-
nomials of the random variables. The orthogonal polynomials used depend on
the distribution from which the random variables are sampled. In our case,
the states of the agents depend on the agent structural identities (here, agent
degrees, whose distribution is prescribed by the network) -and, of course, on
time. By analogy, we can think of the degrees as a “random heterogeneity pa-
rameter” with a given distribution, and parsimoniously capture its effect on the
agent states by expanding the states in terms of suitable orthogonal functions
of the degree. It is clear that the approach can be extended to states that de-
pend on “higher order” structural identities - identities that do not only depend
on the degree, but also on more/different network statistics: for example, de-
gree and clustering coefficients for each node. The joint distribution of these
latter two features will again be dictated by the network, and the basis func-
tions will be now two-dimensional - clearly, the integrals involved in computing
the corresponding coefficients will start becoming cumbersome as the number
of “determining features” grows. For such problems, there has already been
considerable progress on collocation-based computations, and the use of sparse
grids in the UQ literature [27, 28, 29] and we expect that these tools will also
become useful in network coarse-graining when multiple network features affect
the system state. Still, there is no reason for the roots of polynomials orthogonal
with a given degree distribution weight to be themselves integers, and so collo-
cation approaches to approximating integrals over degree distribu



connected with a node of degree kj ; they also considered the case of no assor-
tativity. In our case, we do not derive such equations explicitly, but we solve
them through our equation-free approach. All our computations above were
performed with a fixed, static network, with a particular, prescribed degree dis-
tribution; choosing that particular network, also de facto selected all additional
high order statistics through the network construction (including a particular
assortativity). In that sense, our equations constitute a coarse-graining of the

particular network.
It is also conceivable that one may want to construct (and average over) sev-

eral sample networks



a research visit to Princeton.

Appendix A. Finding a suitable basis of orthogonal polynomials tai-

lored to a given degree distribution

The procedure that we use to evaluate a set of polynomials orthogonal to
one another with respect to an empirical weight distribution [33] (defined over a
range of integers, here the node degrees) is described here. Let the i-th required
polynomial be denoted by pi, and let w(d) be the specified discrete weight
distribution. pi can be written using the following general representation:

pi = αi



1 +
i−1
∑

j=1

yijd



 . (A.1)

The orthogonality condition is written as

〈pi, pj〉w(d) = δij . (A.2)

Since we are interested in evaluating the function at discrete values of d, we
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