PHASE OSCILLATOR NETWORK MODELS OF BRAIN DYNAMICS
CARLO R. LAING

Abstract. Networks of periodically firing neurons can be modelled as networks of
coupled phase oscillators, each oscillator being described by a single angular variable.
Networks of two types of neural phase oscillators are analysed here: the theta neu-
ron and the Winfree oscillator. By taking the limit of an infinite number of neurons
and using the Ott/Antonsen ansatz, we derive and then numerically analyse “neu-
ral field” type di erential equations which govern the evolution of macroscopic order
parameter-like quantities. The mathematical framework presented here allows one e -
ciently simulate such networks, and to investigate the e ects of changing the structure
of a network of neurons, or the parameters of such networks.

1. Introduction

It is well established that a single neuron can fire a periodic train of ac
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ones. The study of oscillations in neuroscience is a large topic [55, 56, 20, 10, 54] and
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identical. Thus we can determine the asymptotic dynamics of (6) by assuming that F
is given by (9). It is helpful to introduce the complex order parameter, as considered by
Kuramoto in the context of coupled phase oscillators [30, 53]

00 27

(10) z(t) = F(1,6,t)e” do dl.

—oo 0

The quantity z can be thought of as the expected value of €. Substituting the ansatz (9)
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of the infinite network. This pair of equations was studied with T = 0, i.e. instanta-
neous synapses, by [39]. For a physical interpretation of z  C, write z(t) = r(t)e®¥®,
Integrating (9) over | we obtain the probability density function

1—r2(t)
2m{l — 2r(t)cos [0 — ()] + r2(t)}

(18) P, 1) =

which is a unimodal function of 6 with maximum at 8 = (¢, and whose sharpness is
governed by the value of r [35, 34]. Alternatively, we follow [42] and define
1—7z _ 1+2irsing —r?

(19) YETHT T T arcosy+r2
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and have

(42)

PHASE OSCILLATOR NETWORK MODELS OF BRAIN DYNAMICS

00 27
z(t) = F (0,8, t)e” do dw.

—oco O
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equations are then

az(x,t) _ R(x,t)e % N (iw
at 2y
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